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Abstract On 16 September 2015, a moment magnitude (Mw) 8.3 earthquake struck off the coast of central
Chile, generating a large tsunami with nearby coastal wave heights observed on tide gauges in Chile and
Peru of up to 4.7m and distal observations of over 40 cm in the Kuril Islands across the Pacific Ocean. Through
a transcoastal geodetic study, including tsunami time series recorded at open ocean pressure gauges,
subaerial deformation observed through interferometric synthetic aperture radar from the Sentinel-1 A
satellite and continuous GPS, we identify the location and extent of coseismic slip. We find that most
coseismic slip was concentrated in a patch immediately offshore, with little modeled slip near the trench. This
result satisfies the tsunami waveforms measured in the deep ocean north of the rupture area, with wave
heights up to 10 cm. While the event exhibits some features of a slow tsunami earthquake (moderately large
tsunami and possible slow second-stage rupture), our inversion results do not require substantial near-trench
rupture. However, the prevalence of large and shallow thrust along subduction megathrusts along central
Chile raises the question of the likelihood of future such events and the implications for future hazardous
tsunamigenic earthquakes.

1. Introduction

Over the past century, the Peru-Chile trench has produced many great tsunamigenic earthquakes and has
been the focus of several studies of subduction zone earthquake excitation, tectonic strain accumulation,
and interseismic coupling [Vigny et al., 2009; Moreno et al., 2010, 2011]. This propensity for large events is
in part fueled by the region’s rapid plate motion. In the vicinity of central Chile, the Nazca plate subducts
beneath the South American plate with a rate of convergence of 74mm/yr [DeMets et al., 2010]. Many of
the more recent earthquakes in the region have produced tsunamis that have been recorded at coastal tide
gauges as well as at deep ocean pressure sensors as shown in Figure 1.

One problem in determining the extent of slip from megathrust events is having a clearly resolved domain
that extends past the coast to the trench. This shallow, submarine zone is oftentimes poorly resolved
through purely geodetic data sets, where many different rupture models can provide equally satisfactory
fits to observed data. However, the inclusion of tsunami data, particularly as recorded away from the
source at deep ocean pressure gauges, adds a resolvability in this shallow zone that is sensitive to tsunami
excitation.

The tsunami generated from a large earthquake is a function of the amount of slip occurring underwater,
which for many cases translates to the amount of slip occurring within a shallow (<30 km depth) part of
the megathrust. Tsunami waveforms are therefore a good proxy for understanding this shallow, near-trench
environment, which for many regions lacks direct observation by instrumentation. This can be particularly
important for a special subclass of earthquakes, aptly named tsunami earthquakes, which generate a much
larger tsunami than expected from the derived magnitude, and are often deficient in radiating seismic
energy while maintaining a characteristically slow rupture propagation [Kanamori, 1972]. The 1996
Chimbote, Peru earthquake, with a Mw of only 7.8, produced 1m level waves locally around Peru and
Northern Chile and waves up to 0.3m near Easter Island, approximately 3800 km away, with up to a
maximum runup height of almost 5m. The disproportionately large tsunami generated by this event is
partially a function of its rupture along the shallow part of the megathrust [Heinrich et al., 1998]. Its source
location and its deficiency in radiating high-frequency energy led this event to be categorized as a
tsunami earthquake by Newman and Okal [1998].
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However, other tsunamigenic earthquakes in this region were recorded transoceanically without falling into
the tsunami earthquake subclass. The largest ever instrumentally recorded earthquake, occurring near
Valdivia, Chile, in 1960, generated a large and devastating transoceanic tsunami. Eyewitness observations
near the source region suggest 10 to 15m waves along the coast [National Geophysical Data Center database
[NGDC], 2016]. On a regional scale, tide gauge recordings near the city of Concepción topped out with
zero-to-crest amplitudes of over 2.5m and tide gauges in northern Chile and Peru (2000 to 3000 km away)
recorded waves between 0.5 and 1m in height [NGDC, 2016].

More recently, the 2010 Mw 8.8 Maule earthquake ruptured a patch of the megathrust just to the north of the
1960 Valdivia earthquake. In the near field, tide gauges recorded waves with amplitudes around 1m, with the
largest wave=1.3m occurring in a bay near the city of Coquimbo. Far-field recordings in Peru were less than
0.5m. Maximum on-land runup heights reached 29m at Tirua, 250 km from the source region. Nevertheless,
the earthquake and tsunami created over 30 billion dollars in damage and resulted in over 500 causalities in

Figure 1. Regional map of past tsunamigenic earthquakes and their generated tsunamis. The epicenter of the 1960 and centroid location for later events [Ekström
et al., 2012] with the approximate rupture area are shown by colored stars and transparent polygons beneath [Bourgeois et al., 1999; Lorito et al., 2011; Hayes et al.,
2014]. For each event, the regional tsunami wave height measured by local tide gauges and deep water pressure sensors (green triangles) are shown as columnar
bars (1960 is augmented by eyewitness accounts (gray tops and are all divided by 4 to stay on scale) [NGDC, 2016]. The Nazca plate motion relative to a stable
South American plate is also shown (black arrows) [DeMets et al., 2010]. Inset figure: preferred fault plane solution using GPS, InSAR, and tsunami data sets.
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Chile [American Red Cross Multi-Disciplinary Team, 2011; Fritz et al., 2011]. Additionally, in 2014, the Mw 8.1
Iquique earthquake in northern Chile, while smaller, also produced a regionally observable tsunami [An et al.,
2014; Gusman et al., 2015].

The latest tsunamigenic addition to the Peru-Chile catalog is the 16 September 2015 Mw 8.3 Illapel earth-
quake. This event nucleated offshore from Coquimbo Province (approximately 31.57°S and 71.67°W) at
approximately 22:54:32 UTC. While the earthquake was smaller in size compared to other contemporary
tsunamigenic earthquakes near Chile, including the 2010 Maule earthquake just to the south, it produced
a locally large tsunami (up to 4.7m near Coquimbo as measured by a local tide gauge). The tsunami was
transoceanic, with tide gauges recordings throughout the Pacific basin, including Oahu, Hawaii (0.23m);
Kuril Islands, Russia (0.44m); and Aburatsu, Japan (0.22m).

The wide spectrum of tsunami generated by earthquakes on the Peru-Chile trench provides a rich and often
underutilized data set for static source inversions. While previous studies of the Illapel earthquake have
incorporated data from the tsunami, either from the nearby deep ocean pressure gauges or the numerous tide
gauges along the coast, this data have been used exclusively through forward models as a constraint on seismic
or geodetic inversions or as a validation of a particular model [Calisto et al., 2016; Heidarzadeh et al., 2016; Li et al.,
2016; Tilmann et al., 2016]. However, for many model results, the forward projection of the model results as a tsu-
nami and its comparison to the observed data fromdeep ocean gauges is out of phase with observations by a few
minutes and often miscalculates the peak amplitude of the first wave, as was shown well in Calisto et al. [2016].
While it is unlikely for any one model to well fit all data sets, this consistent phase delay should be addressed
as it appears to transcend the type of tsunami propagation model used and the handling of the observed data.

To characterize the 2015 Illapel earthquake, we use line-of-sight (LOS) interferometric synthetic aperture
radar (InSAR) observations, static offsets from continuous GPS, and tsunami time series from the four nearest
Deep Ocean Assessment and Reporting of Tsunamis (henceforth, DART) pressure gauges. As was originally
shown in a combined tsunami-InSAR inversion by Gusman et al. [2010], we find that the combination of both
land-based geodetic and tsunami data sets, which span the shoreline, allows for maximum resolution of the
earthquake slip environment across the subductionmegathrust. As we detail below, through a joint inversion
of both data types, we find that the maximum coseismic slip occurred in the downdip near-coastal environ-
ment, providing the best fit in phase and amplitude to deep ocean time series and on-land static deforma-
tion. This moves the locus of dominant slip away from the near-trench environment. While this provides a
better fit to the tsunami data, it is in contradiction to some past geodetic and seismic studies on the same
event [Heidarzadeh et al., 2016; Lee et al., 2016; Li et al., 2016; Ruiz et al., 2016; Ye et al., 2016].

2. Data

In this study we incorporate data from four nearby DART pressure gauges. Each gauge records the pressure of
the overlying water column and translates this to water column height using a conversion constant at 15min,
1min, or 15 s sampling frequencies depending on if each gauge is in standby or a triggered event mode. With
a sensitivity of less than 1mm in deep water, DART pressure gauges are ideal for measuring long period,
low-amplitude tsunami waves. Unlike coastal tide gauges which record the tsunami as it interacts with the
coastline, leading to nonlinear effects such as harbor resonance, DART gauges, because they are located in
the deep ocean, are largely immune to small-scale bathymetric changes. We removed tides recorded at each
station through polynomial fitting then filtered the signals to remove high-frequency surface wave energy.
Additionally, we windowed each time series to only include the tsunami’s arrival and first wavelength in
the signal used for the inversion. This is of particular importance for the two nearest stations, where waves
reflected from the coast appear early on in the time series.

We also use the LOS displacement field derived from a pair of descending track scenes (24 August and 17
September 2015) recorded by the Sentinel-1A SAR satellite and processed by the European Space Agency
[Prats-Iraola et al., 2016]. The resultant InSAR image shows a maximum of 150 cm of ground deformation
in the LOS direction. While we correct for changes in LOS look angle, we also tested a constant angle of
41° off nadir, near the maximum deformation, and found the difference to be negligible.

Because the data density and interdependence of pixels is extremely high (on the order of 107 pixels
per image), it was necessary for us to downsample the field of data to make the image manageable for
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computational inversions. To do so,
we use a two-dimensional Quadtree
decomposition similar to Jónsson
et al. [2002] that retains more infor-
mation in environments that have
more significant change. We require
that each geographically oriented
quadrangle containing InSAR signals
is split into four smaller quadrangles
whenever the variance in LOS displa-
cement is greater than a set tolerance
level (5% difference). For the remain-
ing 1200 boxes, we assign the aver-
age displacement to the “center of
mass” position of coherent pixels.
The resulting downsampled image,
overlaying the original displacement
field, is shown in Figure 2. Because
the second pass follows 1 day after
the event, any postseismic signal is
likely to remain small. Furthermore,
because most observations of early
afterslip occur primarily updip of the
main rupture along subduction zones
[e.g., Hsu et al., 2006; Malservisi et al.,
2015], we suspect the land-based
data to be more representative of
coseismic rupture.

Additionally, we incorporate static
offsets from 16 three-component
continuous GPS stations, located
in central Chile, operated by the
National Seismological Center of the
Universidad de Chile, with static dis-
placements reported in Ruiz et al.
[2016]. The data set shows a consis-
tent seaward motion by all stations
and a small but complex and compar-
ably small vertical signal of uplift and
subsidence at the coastal stations.

When constrained to the use of only land-based geodetic instruments such as GPS and InSAR, the shallow
subduction zone region is generally too far offshore to be resolvable in distributed-slip (i.e., “finite fault”)
inversions. While seafloor geodetic instruments are feasible, they are often cost prohibitive and thus few
regions currently have the infrastructure in place, causing many communities to forgo their use [Newman,
2011]. This leads to difficulty in constraining slip in this highly hazardous, but in these cases poorly resolved,
zone. By supplementing this data set with ocean-based observations, like tide gauge or pressure gauge time
series, we find that spatial resolvability of the offshore region increases substantially (see section 3.3, below).

3. Methods
3.1. Model Geometry

We describe the source region with a three-dimensional curviplanar fault geometry. We then discretize the
modeled fault plane into a 575× 200 km surface, consisting of a 23 × 8 grid, with individual patches of

Figure 2. Regional InSAR-derived displacements in the direction of satellite
line of sight with Quadtree discretization (grey boxes). Each box represents
one point used in the inversion. Triangles indicate the location of the nearby
GPS stations. The color of each triangle is the magnitude of displacement of
the three-component GPS when translated into the line-of-sight direction.
The matching colors between the InSAR displacement field and the GPS
show that both data sets are consistent with each other.
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dimensions 25 km along strike and 25 km along dip. The strike and dip of the fault interface vary for each
patch, approximating the profile created from Slab 1.0 [Hayes et al., 2012]. While the inclusion of a strike
variability does cause a small amount of overlap of patches, the total overlap is negligible in calculating
the seismic moment.

3.2. Inversion Technique

We calculate Green’s functions for InSAR LOS displacements and GPS static offsets through an analytic solu-
tion to the elastodynamic equations for rectangular dislocations in an elastic half-space [Okada, 1985]. For
DART data, we generate Green’s functions relating fault slip by combining the vertical surface deformation
from Okada [1985] with the tsunami propagation model, JAGURS [Baba et al., 2015; Allgeyer and Cummins,
2014]. JAGURS is a finite difference method model that, in addition to solving the nonlinear shallow water
wave equations, has the ability to incorporate elastic loading, seawater compressibility, gravitational poten-
tial change, and Boussinesq dispersion into the propagation simulation. In order to account for hydrody-
namic effects that alter the pattern of displacement transmitted from the seafloor to sea surface, we
applied a smoothing filter [Kajiura, 1963] to the seafloor displacement of each subfault before it was trans-
lated to the sea surface. Finally, we perform a linear inversion for positive dip-slip motion (thrust) along
our fault geometry, bounding to be less than 20m per fault patch. While the tsunami propagation code is
nonlinear, it is well behaved for open ocean tsunami propagation, particularly in the near field, making it
amenable for inclusion in a bound linear inversion.

We relate our geodetic and tsunami Green’s functions to fault interface slip through the model GTdef
developed by Chen et al. [2009] and following Jónsson et al. [2002]. The model solves the linear system of
equations using

w d

0

� �
¼ w G

κ2D

� �
m

where d is the observed data vector, G is the Green’s function matrix, m is the vector of unknown slip on
the fault, and D is a finite difference smoothing operator that relates each patch with a weight regulated
by κ. The Green’s function matrix is composed of tsunami waveforms and static offsets from both LOS
InSAR measurements and horizontal and vertical GPS measurements. Both the observation vector and
the Green’s function matrix are modified with a coefficient, w, representing measurement errors associated
with each type of observation and a weight relating the different data sets. The total contribution of each
data set varies, with the number of discretized tsunami waveform data (10,800 points) exceeding Quadtree
downsampled InSAR data (1200 points) and GPS data (16 sites × 3 components). To ensure comparable
sensitivity between the tsunami and land-based geodetic data, we weighted the cumulative data sets
equally for the inversion.

We regularize our solution using κ to force an interdependence between adjacent slip patches [Harris and
Segall, 1987]. An increasing smoothing factor, acts as a trade-off with the misfit of the model. The misfit is
determined as the root-mean-square of the weighted-residual sum of squares. While an unconstrained
model where each patch acts independently of its surrounds would theoretically provide the best fit to
the observed data, solutions would be nonunique and would potentially provide unrealistically rough results.
Instead, we evaluate a range of unique models constrained by increasing κ (Figure S1 in the supporting infor-
mation), before choosing our preferred model, determined by evaluating the trade-off between model misfit
and roughness.

3.3. Model Resolution

We approximate the spatial resolvability of our model using a “checkerboard test,” consisting of 50 km by
50 km blocks with alternating predefined uniform slip magnitudes between 0 and 1m (Figure 3). Using these
patches as input, we predict deformation at each data point for InSAR, GPS, and tsunami data sets as well as
the combination of all three. We subsequently invert these synthetic data with our observed data error
and compare our inverted with our initial models. In areas where the checkerboard is retained, we have
high resolvability.

The spatial resolution of the study region is assumed to vary due to a nonuniform distribution of observations.
For geodetic (InSAR and GPS) checkerboard results, the best resolution is centered at 71.5°W and 31°S,
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about where the largest change in deformation both in InSAR and GPS offsets occurs. However, resolution is
limited offshore and does not extend along strike through the study area. The tsunami data set
checkerboard result shows an excellent recreation of the checkerboard pattern offshore, but resolution is
quickly lost for fault patches located under land, where slip would minimally affect the water column. The
checkerboard for the combined data set has good resolution for almost the entire study region, excluding a

Figure 3. “Checkerboard” resolution tests. (a) Geodetic only checkerboard solution, using only the InSAR and GPS data sets. (b) Preferredmodel results from an InSAR
and GPS data set. (c) Checkerboard solution incorporating only DART tsunami waveforms. (d) Preferred model results from a tsunami data set. (e) Checkerboard
solution using all available data. (f) Preferred slip solution using all data. (g) Initial checkerboard input with 50 × 50 km checkers alternating between 0 and 1m of
dip slip. Solutions in Figures 3b and 3c illustrate the spatial variability and limitations of using geodetic and tsunami data sets, respectively.
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patch downdip and to the north of the
main region of deformation, where
there are few GPS stations and a small
amount of change in the InSAR image,
thus a smaller data set. However, for
the combination image, the checker-
board pattern was recovered for the
region where we expect to see most
slip from this earthquake.

4. Results

The majority of slip occurred in one
main patch immediately offshore
but not reaching the trench axis.
The peak slip in our preferred model
reaches 11m, while the main patch
of consistent slip extends about
125 km along strike and 50 km along
dip. This peak slip measurement is
an estimate of the slip in the
smoothed model; the value has the
potential to change with a different
smoothing factor. Forward projec-
tions of the GPS displacement
vectors, InSAR LOS displacement
fields, and tsunami waveforms are
shown in Figures 4–6.

Our model is in good agreement
with tsunami time series recorded at
four nearby DART gauges (Figure 5),
with little phase delay between the
modeled tsunami arrival and the
observed time series, and a consis-
tent peak amplitude for the initial

part of the tsunami, before the inclusions of coastal reflections. The fit of the model at the nearest gauge,
DART 32402, also partially recreates the wave trough that was recorded about 50min after the earthquake.
This feature was not modeled in studies assessed in Calisto et al. [2016], Heidarzadeh et al. [2016], or Tang
et al. [2016]. While the later, trailing part of the tsunami is not consistently recreated across all DART gauges,
this part of the time series includes modulations of the tsunami from coastal reflections and inundation,
which we do not confidently recreate in our tsunami Green’s functions or forward tsunami model.

Forward projections of the geodetic data, both for the GPS stations and a recreation of the InSAR deforma-
tion, both yield good results. The largest misfit within the geodetic data sets occurs close to the coastline
where the preferred model slightly underpredicts deformation.

5. Discussion

The addition of a tsunami data set to the earthquake source inversion adds a spatial resolution to the solu-
tion, especially in the near-trench region. This is noticeable when comparing the arrival times of a tsunami
at deep water gauges between models and observations. The inclusion of tsunami data sets also assists in
constraining shallow slip, which may not be resolved well with land-based data sets, and may also constrain
seafloor uplift in a complex and often poorly understood part of the subduction zone.

This region has poor azimuthal coverage of DART gauges; they are only located to the north of the rupture
area and oblique to the directivity of the tsunami. While a new station was added directly south of the

Figure 4. Observed (gray) and modeled (blue) horizontal and vertical coseis-
mic GPS coseismic displacements superimposed on the preferred slip model
(repeated from Figure 3f).

Journal of Geophysical Research: Solid Earth 10.1002/2016JB013883

WILLIAMSON ET AL. RECONSTRUCTION OF ILLAPEL COSEISMIC SLIP 2125



Illapel earthquake during the fall of 2015, which could potentially aid in constraining the location of slip with
further confidence, it was not fully deployed until after the event. Located near the trench axis, the close
proximity of the gauge to the megathrust reduced the delay between the earthquake and the arrival of
the tsunami at the station, increasing the time available to assess the tsunami for far-field hazard warnings.
It also provides an opportunity for real-time or near-real-time source inversions incorporating tsunami data
and possibly supplementing other real-time source characterization methods [Benavente et al., 2016].

Ideally, the inclusion of transoceanic DART stations can aid in the modeling of offshore slip through addi-
tional observations over a wider azimuth range. However, this also requires the inclusion of the accumulating
effects of dispersion and possibly the elastic loading of the seafloor from the propagating wave. These effects
not only change the arrival time of the wave at far-field stations, when compared to linear longwave models,
but also distort the waveform itself [Watada et al., 2014]. While it is possible to address some of these distor-
tions [e.g.,Watada et al., 2014], we exclude use of the far-field tsunami waveforms because they are expected
to have much less sensitivity to the details of the slip distribution than the near-field waveforms used here
[Geist and Dmowska, 1999].

Figure 5. (left column) Black line: recorded tsunami waveforms from the four nearest and active DART pressure gauges with timing relative to the main shock. Red
line: forward simulated tsunami result for preferred model. The gray boxes in each of the four subplots highlight the windowed region used in the inversion process.
Regions were picked to include the first and largest amplitude part of the tsunami while excluding surface wave recordings and later coastal reflections. Both of the
excluded effects cannot be modeled through our inversion process. (right) Geographic distribution of nearby DART gauges active during the earthquake (red solid
triangles). The discretized fault plane is shown near 30°S. The hollow triangle outlined in red is the newest addition to the DART gauge fleet along the Peru-Chile
trench but was not active during the tsunami.
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Most earthquakes exhibit rupture speeds up to 3 km/s in subduction zone environments [e.g., Bilek and Lay,
1999]. However, in the case of slow, tsunami earthquakes, rupture can be substantially reduced, down to as
little as 1 km/s, greatly extending the duration of rupture [Kanamori, 1972], and substantially diminishing the
propagated energy, as was the case in the 1996 Chimbote, Peru earthquake (Figure 1) [Newman and Okal,
1998]. The slowed rupture is sometimes attributed to slip in the shallowest portion of the interface near
the trench [e.g., Bilek and Lay, 1999; Polet and Kanamori, 2000]. Based on teleseismic energy backprojections,
Yin et al. [2016] identified a substantial and slow delayed rupture component to the 2015 Illapel earthquake,
extending between 80 and 130 s from the initial rupture, with the patch occurring updip of the initial nuclea-
tion and very near the trench. Using a teleseismic inversion of the spectral contributions from the Illapel
earthquake, Lee et al. [2016] similarly found a two-stage rupture process but with moderately longer dura-
tions, the first lasting 100 s and the second not terminating until about 250 s after the rupture initiation.

Examination of the real-time radiated energy growth, automatically ran at Georgia Tech using RTerg [Convers
and Newman, 2011], shows that this earthquake does indeed exhibit complex and delayed energy release
that is discernable within the cumulative growth of high-frequency (0.5–2Hz) teleseismically radiated Pwave
energy (Figure 7). While the automated algorithm estimated the rupture duration, TR, at 135 s using the cross-
over between the rapid initial growth and the later slow growth of high-frequency energy, the steeply sloped
growth phase uncharacteristically exhibits a break in the linear slope. Unlike most other earthquakes which
exhibit a simple singular growth phase, this event has a more rapid growth period that terminates at 83 s,
followed by a more slowly growing phase that terminates near 146 s. Newman et al. [2011], using the 2010
Mentawai tsunami earthquake, identified that such a depressed growth is a characteristic of slow rupture.
Interestingly, these windows correspond well with the two periods found by Yin et al. [2016] that also identi-
fied the second stage as growing more slowly. Furthermore, the real-time energy result culminated in a high-
frequency energy magnitude, Me� hf = 7.8 (corresponding to 3.0E15 J), 0.5 units smaller than Mw (8.3) as
reported by the Global Centroid Moment Tensor Catalog (gCMT). Such a feature is comparable to the defi-
ciency in the theta parameter (Θ= log10(E/M0)), originally described as characteristic for slow tsunami earth-
quakes in Newman and Okal [1998]. Thus, while our joint inversion that includes DART data suggests themost

Figure 6. Comparison of InSAR line-of-sight (LOS) change for data and our preferred model. (a) Observed LOS displace-
ment, repeated from Figure 2. (b) LOS projection of the preferred model results. (c) Residual LOS displacement,
determined by removing the predicted (Figure 6b) from the observed (Figure 6a) signal.
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updip component of the megathrust is not responsible for the tsunami generated, a number of results
strongly support the likelihood of a slowed and possibly near-trench component: (1) the backprojections
of Yin et al. [2016], (2) the spectral analysis of Lee et al. [2016], and (3) the slowed secondary growth and
reduced overall earthquake energy following Convers and Newman [2011]. While it is likely that the second
and slowed phase of energy release contributed to the overall tsunami, it is not clear that significant
fractions of the slip for this component occurred near the trench. If the slowed phase did occur near the
trench, it is possible that the dip angle is so low that it had an inappreciable contribution to tsunami
generation.

Figure 7. The cumulative high-frequency energy radiated from the Illapel earthquake is shown (red line) using data from 41 seismic stations available in real time
(red triangles in map) and automatically processed following Convers and Newman [2011]. The automated rupture duration, TR (dashed gray line), two near-linear
periods of growth (denoted by thick blue lines), and their termination times relative to the earthquake nucleation (dashed black lines). The cumulative energy
is converted to a high-frequency energy magnitude, which appears deficient for this event, similar but more moderate than slow-rupturing tsunami earthquakes.
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6. Conclusion

We conduct a transcoastal joint inversion to solve for coseismic slip along the subduction megathrust using
deep ocean pressure gauge tsunami time series, continuous GPS, and Sentinal-1A InSAR data following the
2015 Illapel earthquake. By supplementing the traditional land-based geodetic slip inversion with a tsunami
data set, key information about the region between the trench and the coast can be incorporated, substan-
tially increasing the resolution domain for megathrust events. Our preferred result has a large concentration
of slip near the coastline and downdip from the trench axis, but still under a submarine environment,
leading to tsunami excitation. Our model is in good agreement with tsunami time series recorded at four
nearby DART gauges, with little phase delay between the modeled tsunami arrival and the observed time
series, and a consistent peak amplitude for the initial part of the tsunami, before the inclusions of coastal
reflections. Unlike other models, this result does not require the earthquake to rupture the near-trench
region of the megathrust in order to fit the timing or magnitude of the observed tsunami. The incorporation
of tsunami data into the inversion processes provides a useful data set for constraining offshore slip in a
region that is otherwise difficult to resolve through geodetic means. Consistent use of tsunami data, when
available, for future earthquakes will allow for a clearer understanding of when there is and is not shallow
slip on the megathrust. When applied, this data allow for a better assessment of the diverse tsunamigenic
behavior of earthquakes along the Peru-Chile trench and can also be included in studies of other seismically
active regions.
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